Patch-Set-Based Representation for Alignment-Free Image Set Classification
نویسندگان
چکیده
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملExamples of Set - to - Set Image Classification
We present a framework for representing a set of images as a point on a Grassmann manifold. A collection of sets of images for a specific class is then associated with a collection of points on this manifold. Relationships between classes as defined by points associated with sets of images may be determined using the projection F-norm, geodesic (or other) distances on the Grassmann manifold. We...
متن کاملGeneralized Mutual Subspace Based Methods for Image Set Classification
The subspace-based methods are effectively applied to classify sets of feature vectors by modeling them as subspaces. It is, however, difficult to appropriately determine the subspace dimensionality in advance for better performance. For alleviating such issue, we present a generalized mutual subspace method by introducing soft weighting across the basis vectors of the subspace. The bases are e...
متن کاملImage Set Classification for Low Resolution Surveillance
This paper proposes a novel image set classification technique based on the concept of linear regression. Unlike most other approaches, the proposed technique does not involve any training or feature extraction. The gallery image sets are represented as subspaces in a high dimensional space. Class specific gallery subspaces are used to estimate regression models for each image of the test image...
متن کاملSparse Kernel Learning for Image Set Classification
No single universal image set representation can efficiently encode all types of image set variations. In the absence of expensive validation data, automatically ranking representations with respect to performance is a challenging task. We propose a sparse kernel learning algorithm for automatic selection and integration of the most discriminative subset of kernels derived from different image ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Circuits and Systems for Video Technology
سال: 2016
ISSN: 1051-8215,1558-2205
DOI: 10.1109/tcsvt.2015.2469571